
Efficient Parallel Determinacy Race Detection for
Two-Dimensional Dags

Yifan Xu
Washington University in St. Louis

xuyifan@wustl.edu

I-Ting Angelina Lee
Washington University in St. Louis

angelee@wustl.edu

Kunal Agrawal
Washington University in St. Louis

kunal@wustl.edu

Abstract

A program is said to have a determinacy race if logically
parallel parts of a program access the same memory location
and one of the accesses is a write. These races are generally
bugs in the program since they lead to non-deterministic pro-
gram behavior — different schedules of the program can lead
to different results. Most prior work on detecting these races
focuses on a subclass of programs with fork-join parallelism.

This paper presents a race-detection algorithm, 2D-Order,
for detecting races in a more general class of programs,
namely programs whose dependence structure can be rep-
resented as planar dags embedded in 2D grids. Such depen-
dence structures arise from programs that use pipelined
parallelism or dynamic programming recurrences. Given a
computation with T1 work and T∞ span, 2D-Order executes
it while also detecting races in O(T1/P +T∞) time on P pro-
cessors, which is asymptotically optimal.

We also implemented PRacer, a race-detection algorithm
based on 2D-Order for Cilk-P, which is a language for ex-
pressing pipeline parallelism. Empirical results demonstrate
that PRacer incurs reasonable overhead and exhibits scalabil-
ity similar to the baseline (executions without race detection)
when running on multiple cores.

ACM Reference format:

Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal. 2018. Efficient

Parallel Determinacy Race Detection for Two-Dimensional Dags. In

Proceedings of PPoPP ’18: Principles and Practice of Parallel Program-

ming, Vienna, Austria, February 24–28, 2018 (PPoPP ’18), 13 pages.

https://doi.org/10.1145/3178487.3178515

1 Introduction

A determinacy race [19] occurs when two or more logically
parallel instructions access the same memory location, and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP ’18, February 24–28, 2018, Vienna, Austria

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4982-6/18/02. . . $15.00

https://doi.org/10.1145/3178487.3178515

at least one of them is a write.1 A determinacy race are often
bugs since they can lead to nondeterministic program behav-
iors. In this paper, we focus on performing race detection on

the fly as the program executes; for a given program and
input, we want to report a race if and only if the program
contains a race for that input (regardless of schedule).
One can model the execution of a program as a directed

acyclic graph (or dag for short), where a node represents a
strand, or a sequence of instructions without any parallel
control, and an edge represents a control dependence. Given
a currently executing strand u that reads a memory location
�, a race detection algorithm reports a race if there is a pre-
viously executed strand v such that v wrote to � and v is
logically in parallel with u (there is no path from v to u).
Many on-the-fly race detection algorithms [6, 20, 35, 40,

47, 48, 60] have been developed for fork-join programs —
a form of parallelism supported by many concurrency plat-
forms. It is exemplified by the spawn and sync constructs in
Cilk dialects [12, 22, 25, 27, 31], the async and finish con-
structs in X10 [9] and Habanero dialects [4, 8], and the task
pragma in OpenMP [42]. Fork-join programs can be repre-
sented as series-parallel dags [61] — these are dags with
special structural properties that race-detection algorithms
exploit to do efficient race-detection. In particular, for such
dags, Utterback et al. [60] recently proposed a parallel algo-
rithm for on-the-fly race detection that has an asymptotically
optimal parallel running time.
Another popular structured dag model is two-

dimensional dags (or 2D dags) — planar dags that
can be embedded within a two-dimensional grid space.2

Programs that generate 2D dags can arise from commonly
used paradigms such as dynamic programming recurrences
and linear pipelines. Linear pipelines, in particular, are a
well-known parallel pattern used to parallelize applications
and is widely supported [1, 11, 23, 24, 32, 33, 43, 43, 44, 46, 49–
53, 56, 59], including notably Intel’s Threading Building
Blocks (TBB) [34], the ordered directive in OpenMP [42],
and Cilk-P [28, 29], an extension to Cilk designed specifically
for linear pipelines. It has been shown that a program
with line pipelines can be scheduled efficiently using work
stealing [28, 29].

1In contrast, a data race occurs when the atomicity of critical sections is

violated. A determinacy race is sometimes referred to as a general race [39].

This paper focuses on detecting determinacy races, and henceforth when

we say race, we mean determinacy race.
2We formally define 2D dags that our algorithm targets in Section 2.

368

PPoPP ’18, February 24–28, 2018, Vienna, Austria Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal

To our knowledge, Dimitrov et al. [14] provide the known
algorithm for on-the-fly race detection for 2D dags. This
algorithm must execute the program sequentially and it has
never been implemented and evaluated in practice. This
paper provides an efficient, parallel, and practical algorithm
to do race detection on 2D-dags. In particular, we make the
following contributions:
2D-Order (Section 2): We present 2D-Order , a provably

correct and efficient race detection algorithm for 2D dags,
that has an asymptotically optimal parallel running time.
Given a program with work T1 — the amount of time it
takes to run on one processor — and span T∞ — the amount
of time it takes to run on infinitely-many processors, 2D-
Order can detect races while executing the computation on
P processors with expected timeO(T1/P +T∞). This bound is
asymptotically optimal, since this is the best one can dowhen
executing the same program without race detection. 2D-
Order provides a strong correctness guarantee — it reports a
race if and only if the program has a race on that input.

Like prior work, 2D-Order has two main components. (1)
SP-maintenance component maintains enough informa-
tion to answer the question: Is strandu is logically in parallel
with a strand v . As it executes the computation, 2D-Order
maintains two total orders of the strands it has encountered.
In Section 2, we define these two specific orders, show how
to maintain them on the fly, and prove that maintaining
these two orders suffices to answer this question. (2) Mem-

ory access history component keeps track of (a subset of)
previous reader and writer strands for each memory location
�. For parallel race-detection in dags with no structural prop-
erties, one must keep one writer and an unbounded number
readers. For series-parallel programs, Mellor-Crummey [35]
proved that two readers and one writer suffice. We extend
this result and show that two readers and one writer suffice
for 2D-dags as well, which directly follows from the fact that
SP-relationships can be maintained with two orders.

In order to maintain the two orders, we can use two order-
maintenance (OM) data structures [5, 13]. We adapt the tech-
nique described in Utterback [60] which describes an OM
data structure plus scheduler combination that supports con-
current accesses into the data structure while providing op-
timal running time.
Generalizing 2D-Order (Section 3): The algorithm pre-

sented in Section 2 assumes that when a strand u (a node in
the dag) is executed, we know howmany childrenu has. This
assumption may not hold for platforms that generate the
pipelined dag dynamically. In Section 3, we present a variant
of 2D-Order which only assumes that a node v knows its
parents when it executes; this assumption is generally true
since v can only execute after all its parents have executed.
This variant has the same performance bound.

PRacer: Implementing and Evaluating 2D-Order in

Cilk-P (Sections 4 and 5): The algorithms described in
Sections 2 and 3 are formulated in terms of traversing a 2D

dag as the computation unfolds. In Section 4, we show how
one can apply 2D-Order traversal to the language constructs
provided by Cilk-P [28, 29]. Cilk-P is an extension to the
Cilk language that supports linear pipelines with a provably
efficient work-stealing scheduler. Cilk-P is an interesting
case study. Unlike most other systems, Cilk-P supports “on-
the-fly” pipeline parallelism, which allows the programmer
to dictate how the 2D dag may be embedded in the two-
dimensional grid. Due to this, Cilk-P has a particular quirk
that when a node executes, it does not automatically know
its parents’ identities. Since it is essential to identify parents,
2D-Order performs additional bookkeeping to enable this.
Consequently, when applied to Cilk-P’s computation dag on
P processors, 2D-Order runs in expected timeO(T1/P + lgk ·
T∞), where k is the vertical length of the two-dimensional
grid. In practice, this additional lgk overhead is typically
small — in the evaluated benchmarks, k ranges from 3 to 71.
This additional overhead is only due to the particular

quirks of Cilk-P’s language constructs and would not apply
for systems such as Intel TBB, where an executed strand can
easily identify its parents.
We have implemented PRacer, a prototype implementa-

tion of 2D-Order race detection algorithm applied to Cilk-
P. Section 5 empirically evaluates the overhead of PRacer
and shows that it incurs virtually no overhead for SP-
maintenance and achieves similar scalability compared to
applications’ baseline executions without race detection.

2 2D-Order Algorithm

We now describe the basic 2D-Order algorithm. In this sec-
tion, we make two simplifying assumptions: (1) We assume
that a node u’s children are known as soon as u finishes
executing; and (2) There are no redundant edges — and edge
from (u,v) is removed if there is already (a different) directed
path from u to v . We will remove these assumptions in the
next sections. We first provide some basic notation before
describing the 2D-Order’s algorithm for series-parallel main-
tenance and proving its correctness. Then, we describe what
information is kept in the access history and how 2D-Order
checks for races. Finally, we prove the performance bound.

Notation and Definitions

We say x ≺ y iff there is a (non-empty) path from x to y in
the dag. x � y iff either x ≺ y or x = y. We say x ‖ y iff
there is no path from x to y or from y to x .

De�nition 2.1. A 2D dag is a planar directed acyclic graph
with the following properties:

1. It has a unique source node s with no incoming edges
and a unique sink node t with no outgoing edges.

2. Each node has at most two incoming and at most two
outgoing edges. Edges are labeled as pointing either
rightwards or downwards.

This definition implies that each node can have at most
two children — the down-child of a node v is denoted by

369

E�icient Parallel Determinacy Race Detection for Two-Dimensional Dags PPoPP ’18, February 24–28, 2018, Vienna, Austria

v .dchild and the right-child is denoted byv .rchild . Similarly,
the up parent ofv is denoted byv .uparent and the left parent
is denoted by v .lparent .

De�nition 2.2. Given two distinct nodes x and y, a node
v is their common ancestor if v � x and v � y. A node z
is their least common ancestor , denoted by lca(x ,y), if for
all common ancestors v of x and y, we have v � z.

By definition of a 2D dag, a unique least common ancestor
exists for any two nodes (proven in Lemma 2.9). The follow-
ing lemma states that if x ‖ y, then their lca has two children,
and x follows from one while y follows from the other.

Lemma 2.3. For two nodes x and y, say x ‖ y and z =

lca(x ,y). Then we have (1) z has two children; (2) if z.dchild �

x then z.dchild ‖ y, z.rchild � y, and z.rchild ‖ x .

Proof. Suppose that, for contradiction, w � x and w � y

wherew is a child of z; by Definition 2.2 z � lca(x ,y). �

This lemma allows us to relate any two parallel nodes.

De�nition 2.4. Given two nodes x and y where x ‖ y.
Let z = lca(x ,y). Then, x is down of (‖D) y iff z.dchild �

x & z.rchild � y, and x is right of y (‖R) iff z.dchild �

y & z.rchild � x .

We now make some straightforward structural observa-
tions. (1) For distinct nodes x and y, exactly one of the fol-
lowing four conditions hold: x ≺ y, y ≺ x , x ‖D y or y ‖D x .
(2) Given a node x with two children, x .dchild ‖D x .rchild .

2.1 SP-Maintenance in 2D-Order Algorithm

1 Function Insert-Down-First(v)

2 if v .rchild exists then

3 if v .rchild .uparent not exists then

4 OM-Insert(OM-DownFirst, v , v .rchild);

5 end

6 end

7 if v .dchild exists then

8 OM-Insert(OM-DownFirst, v , v .dchild);

9 end

10 end

11 Function Insert-Right-First(v)

12 if v .dchild exists then

13 if v .dchild .lparent not exists then

14 OM-Insert(OM-RightFirst, v , v .dchild);

15 end

16 end

17 if v .rchild exists then

18 OM-Insert(OM-RightFirst, v , v .rchild);

19 end

20 end

Algorithm 1: 2D-Order

2D-Order maintains two total orders on all strands using
order-maintenance data structures. An order-maintenance

(OM) data structure D maintains a total order of elements
and provides the following operations.

• OM-Precedes(D,x ,y): Given pointers to x and y, return
true iff x precedes y in the total order kept by D.

• OM-Insert(D,x ,y): Given a pointer to an existing ele-
ment x , splice-in a new element y immediately after x in
the total order. Thus, x and all its predecessors of x are
before y in the total order, while all successors of x are
after y.

2D-Order keeps two OM data structures — called
OM-RightFirst and OM-DownFirst — to maintain two dif-
ferent orders on all the nodes in the 2D dag. The OM data
structures for both orders are initialized by inserting the
source node s as the first node. Subsequently, it executes
nodes of the dag in any valid serial or parallel order — that is,
a node can be executed when it’s predecessors have finished
executing. After executing each node v , 2D-Order calls the
two functions shown in Algorithm 1.
Function Insert-Down-First(v) inserts v’s children

into the OM-DownFirst data structure. Immediately after
this function is executed, the following will be true in the
OM-DownFirst order: (a) If v has a down child vD , then vD
will be immediately after v . (2) If v has a right child vR and
vR doesn’t have an up parent, then vR will be immediately
after vD (if vD doesn’t exist, then vR will be immediately
after v). The symmetric invariant is true for the function
Insert-Right-First(v).
In other words, for any node u, its up parent is “respon-

sible” for inserting it into the OM-DownFirst data structure
and its left parent is “responsible” for inserting it into the
OM-RightFirst data structure. If u doesn’t have one of the
parents, however, then u’s other parent takes over the corre-
sponding responsibility and inserts u immediately after its
other child (or after the parent itself if the other child doesn’t
exist). It should be clear that each node u is inserted into
each OM data structure exactly once and these insertions
happen before u itself is executed.
To simplify notation, we say that x →D y if x occurs

before y in the OM-DownFirst data structure (that is, if
OM-Precedes(OM-DownFirst,x ,y) returns true). Similarly,
we say x →R y if OM-Precedes(OM-RightFirst,x ,y) re-
turns true. Note that since the algorithm never swaps the
order of the nodes once they are inserted, the answer re-
turned will be consistent once both x and y are inserted.

2.2 OM-DownFirst and OM-RightFirst Maintain

Series-Parallel Relationships

We will now prove that these two total orders are sufficient
to fully specify the partial order of the dag. The following
theorem, which we prove in the remaining subsection, shows
that given any two nodes x and y, we can determine the re-
lationship between them just by looking at the total orders
maintained by OM-DownFirst and OM-RightFirst; if x is be-
fore y in both orders, then x ≺ y; if y is before x in both
orders, then y ≺ x ; otherwise x ‖ y.

370

PPoPP ’18, February 24–28, 2018, Vienna, Austria Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal

s

t

P

P
R

P
D

Figure 1. A path P divides
a 2D dag into two regions,
PR (shaded with horizon-
tal lines) and PD (shaded
in vertical lines).

Theorem 2.5. Given nodes x and y in OM-DownFirst and

OM-RightFirst, x ≺ y iff x →D y and x →R y.

We first prove some structural properties of 2D dags.
Lemma 2.6 (stated without proof) says that any subdagG ′ of
a 2D dagG that has a single source and a single sink is also a
2D dag. Then, we prove that any source to sink path cuts 2d
dags into disjoint graphs with certain properties (Lemmas
2.7 and 2.8).

Lemma 2.6. Consider two nodes a and b in a 2D dagG where

a ≺ b. Construct a subdag G ′ such that x ∈ G ′ if a � x � b

and edge (x ,y) ∈ G ′ if (x ,y) ∈ G. Then G ′ is a 2D dag with

source a and sink b.

Consider a path P from the source s of a 2D dag to its
sink t . We use this path to divide all nodes of the dag into
three subsets P , PR and PD . P contains all the nodes on the
path. Note that for all u ∈ P , at least one of u’s children
(unless u = t) and one of u’s parents (unless u = s) is also in
P . Consider a node u � P — since s ∈ P , u has at least one
ancestor in P . Sayq is the ancestor ofu which is topologically
latest in the path P . Since nodes on P are totally ordered,
there is necessarily this latest node. Then,u ∈ PD if it follows
from q’s down child — that is, if q.dchild � u. Similarly,
u ∈ PR if q.rchild � u. The intuitive meaning of PR and
PD is shown in Figure 1 where path P cleanly divides the
graph into two “contiguous regions.” We now prove that the
definition matches this intuitive meaning.

Lemma 2.7. For any path P , PR ∩PD = ∅ and any path from

node u to node v where u ∈ PR and v ∈ PD must include some

node on P .

Proof. First, we prove disjointness. Consider u � P and say
q is u’s ancestor which is topologically latest in P ; since at
least one of q’s children must be in P , u cannot follow from
both its children. Now, assume for contradiction that there
is a path from u to v that has no node in P . Then the latest
ancestor of u and v on P must be the same node — which is
a contradiction since u ∈ PR and v ∈ PD . �

We omit the proof of Lemma 2.8 due to space constraints;
however, the intuition should be clear from Figure 1:

Lemma 2.8. For any node u ∈ P ,
1. If u has two children and u .rchild ∈ P , then u .dchild ∈

PD . (Similarly, if u .dchild ∈ P , then u .rchild ∈ PR .)

s

z'

x

t

y
z

u Figure 2. Figure for
Lemma 2.9. Assume
two lcas for x and y

exist, namely z and
z ′, and let u be a lca
of z and z ′.

xr

xd

x

P
R

P'
D

t

R

P

P'

y

s
Figure 3. Figure for
Lemma 2.10. Path P

is shown in red, and
path P ′ is in blue.
The shaded region
is R. The node xd
is x .dchild and the
node xr is x .rchild .

2. If u has two parents, if u .lparent ∈ P , then u .uparent ∈

PR . (Similarly, if u .uparent ∈ P , then u .lparent ∈ PD .)

The first statement is obvious from definition, because
u ∈ P and u must be the latest ancestor of u .dchild in P . The
easy way to see the second statement is to notice that if we
flip the direction of all edges and rotate the dag, then source
becomes sink, u .uparent becomes u .dchild , and u .lparent

becomes u .rchild , and PR becomes PD . To formally prove it,
one can induct on the nodes on the path.
We can now use Lemma 2.7 to prove that any two nodes

have a unique lca.

Lemma 2.9. Given two nodes x and y which are in parallel,

lca(x ,y) exists uniquely.

Proof. For the purpose of contradiction, assume two lcas
exist, named z and z ′. By the fact that they are both lca(x ,y),
they must be in parallel with each other. Wlog,3 assume
z ′ ‖D z and let u = lca(z ′, z). Also wlog assume that x ‖D y

with respect to z (i.e., x follows from z.dchild). Construct a
path P that goes from the source s to u to u .rchild to z to
z.dchild to x to the sink t ; such a path exists by the property
of 2D dags and lcas. Then, as shown in Figure 2, z ′ ∈ PD
(since it follows from u .dchild) and y ∈ PR (since it follows
from z.rchild). However, since z ′ = lca(x ,y), there must be
a path P ′ from z ′ to y, which must cross P by Lemma 2.7. If
P ′ cross P before z, it contradicts with the fact that no path
exists between z and z ′. If P ′ cross P after z, it contradicts
with the fact that z = lca(x ,y). Thus, the lca(x ,y) must be
unique. �

We now use these paths to prove a lemma about the in-
sertion order between nodes.

3Wlog stands for “without loss of generality.”

371

E�icient Parallel Determinacy Race Detection for Two-Dimensional Dags PPoPP ’18, February 24–28, 2018, Vienna, Austria

Lemma 2.10. At any point during the execution of 2D-

Order, given node x which has two children. If x .dchild �

OM-DownFirst, then for any y such that x .dchild ≺ y and

x .rchild ‖ y, y � OM-DownFirst.

Proof. Consider the 2D subdag G ′ with source s and sink y.
Let S be the set of all the nodes on paths from s to y. Now we
construct path P using nodes from set S : for any node u such
that u ∈ S and u � P , we have u ∈ PD . Intuitively, P follows
the “top-most right-most” path among all paths from s to y.

First we provex ∈ P . Supposex � P , then by the constraint
of path P , we have x ∈ PD . Since x .rchild � P because
x .rchild ‖ y, we also have x .rchild ∈ PD . Now construct a
path P ′ from s to x to x .dchild toy. By Lemma 2.8, x .rchild ∈

P ′
R . Let R = P ′

R

⋂
PD (the shaded region in Figure 3). Now

consider the whole 2D dagG with source s and sink t , which
includes R. Since x .rchild ∈ R (the shaded region) and t � R,
a path from x .rchild to t must cross with either path P P ′.
Since both P and P ′ ends aty, this means x .rchild ≺ y, which
contradicts with the original assumption that x .rchild ‖ y.
Therefore, we are guaranteed that x ∈ P .

Since P is a continuous path and x .rchild � P , we must
have x .dchild ∈ P . Now we show P is actually an insertion
chain, which means for any node w in P except for s , w is
inserted by its parent in P .
Let v and w be two consecutive nodes in P and v ≺ w .

For the purpose of contradiction, let’s assume thatw is not
inserted by v . According to the Down-First part of algo-
rithm 1, this can only happen whenw has two parents in G
and v = w .lparent . Since v ∈ P , we have v .uparent ∈ PR by
Lemma 2.8. However, since v .uparent ∈ S , it is guaranteed
that either v .uparent ∈ P or v .uparent ∈ PD , which leads
to a contradiction. Thus, P is an insertion chain. Since we
know that x .dchild ∈ P ,y ∈ P , and x .dchild ≺ y, y cannot
be inserted into OM-DownFirst before x .dchild . �

We can now prove the two important properties of down-
first order — namely that x →D y if x ‖D y or if x ≺ y.

Lemma 2.11. At any point during the execution of 2D-Order,

given nodes x andy in OM-DownFirst. If x ‖D y, then x →D y.

Proof. We prove this lemma by induction. Suppose lemma is
true before insertion is invoked on a node y. Consider any x
in OM-DownFirst. We will show if x ‖D y, then x →D y. Let
z = lca(x ,y); we have z.dchild � x and z.rchild � y (The
case where y ‖D x is similar.)

1. y has one single parentw : We first consider the case
where z = w and z.rchild = y. Since z.dchild has not been
inserted in OM-DownFirst yet, and since x must follow from
z.dchild , from Lemma 2.10, we know x has not been inserted.
So this case is trivial. Say z.rchild � y; then, we have z =
lca(w,x) and x ‖D w . By inductive hypothesis, we know
x →D w . Becausey is inserted immediately afterw , therefore
it’s guaranteed that x →D y.

2. y has two parents: According to algorithm 1, y is in-
serted immediately after its up parent y.uparent , sayw . We
now argue that x ‖D w . Let z ′ = lca(w,x). We know that
z ′ � z. If z ′ = z, then we are done. For the rest of the proof,
we assume that z ‖ w ; therefore, z ′ = lca(z,w) since z ′ is an
ancestor of z.
Assume for contradiction that w ‖D x ; therefore

z ′.dchild � w . Therefore, z ′.rchild � z. Consider the 2D-
dag G ′ with source z ′ and sink t and consider a path P

that goes from z ′ to z ′.dchild to w to y to t . We know that
z ′.rchild ∈ PR (from Lemma 2.8); therefore, z ∈ PR since oth-
erwise, the path from z ′ to z will cross P at some node a and
this node a = lca(z,w) instead of z ′. However, we also know
that y.lparent ∈ PD (from Lemma 2.8) and z � y.lparent .
Therefore, the path from z to y.lparent must cross P at some
node b and this would mean that z is an ancestor ofw which
contradicts the assumption.

Therefore x ‖D w and by IH, x →D w ; therefore, when y
is inserted immediately afterw , we have x →D y. �

Lemma 2.12. At any point during the execution of 2D-Order,

given nodes x and y in OM-DownFirst. If x ≺ y, then x →D y.

Proof. We prove this lemma by induction. Suppose lemma is
true before insertion is invoked on a node y. Consider any
node x in OM-DownFirst.
We first show if y ≺ x then y →D x . Letw be the parent

that inserted y. Since y ≺ x , w ≺ x . By IH, w →D x before
the insertion, and thusw →D y →D x after the insertion.

Now we show if x ≺ y, then x →D y.
1. y has one single parent w : In this case, y is inserted

by this parent w immediately after w . Therefore, clearly,
w →D y. Also, if x ≺ y, then x � w sincew isy’s only parent.
If x = w , we are done. If not, according to the inductive
hypothesis, we have x →D w . Therefore, we know x →D y.

2.y has two parents: We knowy is inserted immediately
after y.uparent . If x � y.uparent , we can apply the same
argument as in the single parent case. Now consider the case
that x ‖ y.uparent and x � y.lparent . We will show that
x ‖D y.uparent and by Lemma 2.11, we then have x →D

y.uparent , which leads to x →D y.
For the purpose of contradiction, let’s assume that

y.uparent ‖D x and let z = lca(x ,y.uparent). Consider the
subdag with source z and sink t and construct a path P from
z to z.rchild to x to y to t . Then by Lemma 2.8, we have
y.uparent ∈ PR and z.dchild ∈ PD . Since y.uparent ‖D x ,
there must be a path P ′ from z.dchild to y.uparent , which
must cross P by Lemma 2.7, which contradicts the assump-
tion that z = lca(x ,y.uparent). Thus we must have x ‖D
y.uparent and thus x →D y. �

Symmetrically, one can prove the following lemmas:

Lemma 2.13. At any point during the execution of 2D-Order,

given nodes x and y in OM-RightFirst. If x ≺ y, then x →R y.

372

PPoPP ’18, February 24–28, 2018, Vienna, Austria Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal

Lemma 2.14. At any point during the execution of 2D-Order,

given nodes x and y in OM-RightFirst. If x ‖R y, then x →R y.

Now we can prove the main result:
Proof of Theorem 2.5. From Lemma 2.12 and

Lemma 2.13, it’s straightforward to see that if x ≺ y, then
x →D y and x →R y. For the other direction, suppose x ‖ y

when x →D y and x →R y. Wlog, say y ‖D x . Then we have
y →D x by Lemma 2.11, which contradicts to x →D y. �

2.3 Checking races and updating access history

1 // Called when a strand r read memory location l

2 Function Read(r , l)

3 if Precedes (lwr iter (l), r) is false then

4 ReportRace ();

5 end

6 if OM-Precedes(OM-RightFirst, dreader (l), r) then

7 dreader (l) = r ;

8 end

9 if OM-Precedes(OM-DownFirst, r reader (l), r) then

10 r reader (l) = r ;

11 end

12 end

13 // Called when a strand w wrote to memory location MemLoc

14 Function Write(w , l)

15 if Precedes (lwr iter (l).w) is false

16 or Precedes (dreader (l), w) is false

17 or Precedes (r reader (l),w) is false then

18 ReportRace ();

19 end

20 lwr iter (l) = w ;

21 end

22 //When called, we have either u ≺ v or u ‖ v , but never v ≺ u

23 Function Precedes(u , v)

24 if OM-Precedes(OM-DownFirst, u , v)

25 and OM-Precedes(OM-RightFirst, u , v) then

26 return true

27 end

28 return false

29 end

Algorithm 2: Access history

We now describe how we do race detection using this
algorithm — the code is shown in Algorithm 2. For each
memory location �, our algorithm stores atmost one previous
writer node — called last writer lwriter (�) — this is simply
the last node that wrote to this memory location. If a set of
reader nodes R� have read this memory, the algorithm stores
up to two reader nodes: (1) downmost reader dreader (�):
For all r ∈ R� , either r � dreader (�) or r ‖R dreader (�);
and (2) rightmost reader rreader (�): For all r ∈ R� , either
r ≺ rreader (�) or r ‖D rreader (�).

When a node u tries to write location �, it uses the
OM-DownFirst and OM-RightFirst data structures to check
whether either dreader (�) ‖ u, rreader (�) ‖ u or
lwriter (�) ‖ u. If so, we report a race. In either case, u is

now last writer lwriter (�). When node u tries to read loca-
tion �, it uses the OM-DownFirst and OM-RightFirst data
structures to check whether lwriter (�) ‖ u. If so, we report
a race. In either case, u now checks if dreader (�) →R u; if
so, u is the new downmost reader dreader (�). Similarly, if
rreader (�) →D u, then u is the new rreader (�).

Theorem 2.15. 2D-Order never reports false races and for

racy programs, reports at least one race.

This is the standard correctness guarantee for on-the-fly
race detection algorithms. The proof mostly follows from
previous results — with the exception of one wrinkle. It is
always sufficient to store a single writer in access history;
however, it is not always sufficient to store two readers. In
particular, for general dags, one has to store all parallel reads
that happened since the last write. Mellor-Crummey [35]
proved that for series-parallel dags, it is sufficient to record
two readers. We will now show that for 2D dags, it is also
sufficient to store two readers — in particular, the downmost
and the rightmost readers.
First, let us notice that at any point in the execution

rreader (�) (and dreader (�)) is unique (or null if no node
has read � yet). To see this, note that from Algorithm 2, line
9 and line 10, rreader (�) is simply the last node in the order
maintained by OM-DownFirst that read �.

Theorem 2.16. At any point during the execution of a 2D

dag, let R� be the set of nodes that have read memory location

� and w be any other node. We have r ≺ w for all r ∈ R� if

and only if dreader (�) ≺ w & rreader (�) ≺ w .

Proof. It is clear that if all r ∈ R� precede w then so do
dreader (�) and rreader (�) since they belong to the set R� .

Now say that dreader (�) ≺ w & rreader (�) ≺ w . For any
r ∈ R� , we have, r →R dreader (�) →R w (the first arrow is
by definition of downmost reader and the second from Theo-
rem 2.5). Similarly, we have r →D rreader (�) →D w . There-
fore r is beforew in both OM-DownFirst and OM-RightFirst
orders; by Theorem 2.5, we know that r ≺ w . �

2.4 Performance of 2D-Order

Theorem 2.17. For a 2D dag G with work T1 and span T∞,

we can run do race detection using 2D-Order in timeT1/P +T∞
time on P processors.

First, each node is inserted at most once in OM data struc-
tures and every memory access requires a constant number
queries to OM data structures. If inserts and queries to OM
data structures tookO(1) time, then the work of the program
augmented with 2D-Order is O(T1) and the span is O(T∞).
Sequentially, an OM-data structure can be implemented

for O(1) cost per operation (amortized) [5, 13]. This immedi-
ately gives us an O(T1) time (optimal) sequential algorithm.
This slightly improves the best previous result [14], which
has a multiplicative overhead of the inverse Ackermann’s
function (which is, admittedly, small in practice).

373

E�icient Parallel Determinacy Race Detection for Two-Dimensional Dags PPoPP ’18, February 24–28, 2018, Vienna, Austria

To get parallel performance, we need an OM implementa-
tion that supports concurrent operations. No general O(1)-
time-per-operation concurrent OM data structure is known.
Utterback et al. [60] provide an algorithm (containing mod-
ified OM data structure and work-stealing scheduler) for
programs that access OM data structures in a conflict-free
way. In particular, if a parallel program guarantees that two
logically parallel strands will never try to insert immediately
after the same node, then they show the following result (it
is not explicitly stated, but is implied from their proofs).

Lemma 2.18. From [60] A parallel program with work T1
and span T∞ which accesses into OM data structure(s) in a

conflict-free way can be executed in time O(T1/P +T∞) time.

Note that 2D-Order follows the conflict-free restriction
since all inserts after node v occur when v executes. There-
fore, Theorem 2.17 follows directly from this lemma. Note
that this performance bound only holds if we use the partic-
ular implementations of both the work-stealing scheduler
and the OM data structure described in Utterback [60]. In
Section 5, we briefly describe how we adapted this scheduler
for Cilk-P runtime system.

3 Generalizing 2D-Order

In Section 2, we made two assumptions: (1) When we execute
a node, we already know both its children and whether these
children have their other parent. In practice, we may not
have this information until we encounter the child node. (2)
There are no redundant edges.

Algorithm 3 shows a variant of 2D-Order — these func-
tions are called immediately before executing node v . Here,
when v is executed, instead of inserting its real children, 2D-
Order creates two placeholder nodes for both of v’s children
(denoted as dchildh and dchildh). It will insert both nodes
into OM-DownFirst and OM-RightFirst orders. As seen on
lines 7, 8, 16, and 17 the order after all insertions is v →D

v .dchildh →D v .rchildh andv →R v .rchildh →R v .dchildh .
This is consistent with Algorithm 1 except here we assume
that both children exist and always insert them regardless
of the presence of the other parent.

When a node is executed, it finds its corresponding place-
holder nodes by accessing its parents. If v has only one par-
ent, it has only one placeholder node in each data structure,
and 2D-Order simply use this placeholder node to represent
v in the future. Now consider a node v that has two parents.
Both parents will insert a placeholder node to represent v in
OM-DownFirst and OM-RightFirst data structures, possibly
at different positions. Whenv is executed, 2D-Order chooses
one of these dummies as the “real” one (and different ones
in OM-DownFirst and OM-RightFirst) which will be used
henceforth to represent v when accessing each order. In par-
ticular, whenever we access OM-DownFirst, the placeholder

inserted by v’s up parent will represent v .4 Correspondingly,
when we access OM-RightFirst, the placeholder inserted by
v’s left parentwill representv . The access history and queries
are not affected.

1 Function Insert-Down-First(v)

2 if v .uparent exists then

3 dCurr = v .uparent .dchildh ;

4 else

5 dCurr = v .lparent .rchildh ;

6 end

7 OM-Insert(OM-DownFirst, dCurr , v .rchildh);

8 OM-Insert(OM-DownFirst, dCurr , v .dchildh);

9 end

10 Function Insert-Right-First(v)

11 if v .lparent exists then

12 rCurr = v .lparent .rchildh ;

13 else

14 rCurr = v .uparent .dchildh ;

15 end

16 OM-Insert(OM-RightFirst, rCurr , v .dchildh);

17 OM-Insert(OM-RightFirst, rCurr , v .rchildh);

18 end

Algorithm 3: variant 2D-Order

The code for handling redundant edges is not shown,
but is straightforward. When a node x has two parents,
it first checks if either of them precede the other (using
OM-DownFirst and OM-RightFirst) and if so, it ignores the
redundant edge.

Lemma 3.1. Algorithm 3 has the same correctness and per-

formance properties as Algorithm 1.

The intuition behind the omitted proof is that Algorithm 3
maintains the same order as Algorithm 1 — node v finds its
correct representatives right before it is executed. Before v
executes, the placeholder nodes for v will never be used in
any queries or to insert any other nodes. For the performance
guarantee, notice that each function call does at most twice
as many inserts as Algorithm 1.

4 PRacer: Race Detection for Cilk-P

This section describes PRacer, the particular implementation
of 2D-Order when applied to Cilk-P [28, 29]. Race-detection
for Cilk-P is an interesting case study because Cilk-P’s lan-
guage constructs allow for much more dynamism in the
structure of the pipeline. Due to the particular quirks to Cilk-
P’s pipelines, PRacer incurs an additional lgk overhead on
the span term, where k is the vertical length of the 2D dag.
This section reviews Cilk-P’s support for pipeline parallelism,
presents PRacer in terms of Cilk-P’s pipeline constructs, and
explains the additional performance overhead.

4The placeholder inserted by the v ’s left parent will never be accessed in

OM-DownFirst ifv also has an up parent — this node becomes a dummy. As

an optimization, we can remove this node from OM-DownFirst; however,

this has no bearing on the theoretical correctness or performance.

374

PPoPP ’18, February 24–28, 2018, Vienna, Austria Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal

0 0 0 0 0 0 0

1

3

2

3

4

3

5

2

3

4 4

5

66 6 6 6 6 6

5

i
0

i
1

i
2

i
3

i
4

i
5

i
6

Figure 4. An example of the
kind of 2D dag Cilk-P can
generate. A node presents
a strand, and an edge de-
notes dependence between
two strands. The iteration
numbers are denoted above,
and the numbers in the nodes
denote the stage numbers.

4.1 Cilk-P’s Support for Pipeline Parallelism

From a programmer’s perspective, a linear pipeline is simply
a loop over a stream of input elements, where each loop
iteration i processes the ith element of the input stream.
The loop body encodes the sequence of stages — abstract
functions throughwhich input elements are processed. These
pipelines allow for parallel execution since the execution of
iterations can overlap in time
Cilk-P extends Cilk with three keywords: pipe_while,

pipe_stage, and pipe_stage_wait. The keyword
pipe_while denotes a loop that can be executed in parallel
in a pipelined fashion. The first stage of each iteration is
stage 0 and pipe_while ensures that there are sequential
dependences across stage 0 of all iterations; that is, stage 0
of iteration i does not begin until stage 0 of iteration i-1 com-
pletes. The keywords pipe_stage and pipe_stage_wait

are used inside the body of a pipe_while loop to denote
stage boundaries. By default, the execution of these
constructs in stage s of iteration i ends stage s and advances
to stage s+1 of iteration i . Keyword pipe_stage_wait is
used to enforce dependences between adjacent iterations.
Ending a stage s of iteration i with pipe_stage_wait

enforces that execution of stage s+1 of iteration i does
not begin until stage s+1 of iteration i-1 finishes. Finally,
pipe_while implicitly has a cleanup stage at the end of
every iteration that occurs sequentially across iterations.
The structure of the pipeline for Cilk-P programs is de-

termined dynamically at runtime. The pipe_stage and
pipe_stage_wait statements can be enclosed within other
control constructs, which allows programmers to dynami-
cally vary the number of stages and enforce dependences
based on the input to the iteration. Furthermore, pipe_stage
and pipe_stage_wait optionally take a stage number , an
integer argument to name the stage that the statement is
advancing to. This gives the programmer the flexibility to
dynamically determine the label of stages and skip stages.
Cilk-P constructs can generate the example dag shown

in Figure 4. Each iteration is a vertical line. There are se-
quential dependences across the first and last stages of all
iterations, as dictated by pipe_while. The stages of an itera-
tion form a chain, and horizontal dependences are enforced
by pipe_stage_wait. By naming stages in a certain way, the

programmer can skip stages or dictate that the stages to be
labeled certain way. Still, Cilk-P’s pipeline constructs always
generate a dag that satisfies Definition 2.1 in Section 2.
Cilk-P incorporates a work-stealing scheduler that can

schedule the resulting computation efficiently. Given a com-
putation with T1 work and T∞ span, Cilk-P schedules the
computation on P processors in expected timeT1/P+O(T∞).

5

4.2 PRacer: Applying 2D-Order to Cilk-P

1 Function StageFirst(i)

2 if i is 0 then

3 dCurr = rCurr = source ;

4 else

5 dCurr = rCurr = staдe[i − 1][0].rchildh ;

6 end

7 InsertPlaceHolder (dCurr , rCurr , staдe[i][0]);

8 end

9 Function StageNext(i , s)

10 dCurr = rCurr = staдe[i][s − 1].dchildh ;

11 InsertPlaceHolder (dCurr , rCurr , staдe[i][s]);

12 end

13 Function StageWait(i , s)

14 dCurr = staдe[i][s − 1].dchildh ;

15 lef t = FindLeftParent (i , s);

16 if lef t � −1 then

17 rCurr = staдe[i − 1][lef t].rchildh ;

18 else

19 rCurr = staдe[i][s − 1].dchildh ;

20 end

21 InsertPlaceHolder (dCurr , rCurr , staдe[i][s]);

22 end

23 Function InsertPlaceHolder(dCurr , rCurr , staдe)

24 OM-Insert(OM-DownFirst, dCurr , staдe .rchildh);

25 OM-Insert(OM-DownFirst, dCurr , staдe .dchildh);

26 OM-Insert(OM-RightFirst, rCurr , staдe .dchildh);

27 OM-Insert(OM-RightFirst, rCurr , staдe .rchildh);

28 end

Algorithm 4: 2D-Order for Cilk-P

Algorithm 4 shows the pseudocode for applying 2D-Order
to Cilk-P’s pipeline constructs. In Cilk-P, nodes do not know
if they have a right child when they execute. Stage s of itera-
tion i does not know if stage s of iteration i+1 will depend on
it; we only find out that this dependence exists when (and if)
stage s-1 of iteration i+1 calls pipe_stage_wait. Therefore,
like in Algorithm 3, we must employ placeholder nodes. The
function StageFirst is called before executing stage 0 of
an iteration and is similar to Algorithm 3. The main differ-
ence is that, since stage 0 has no uparent , it knows to use
the rchildh from its lparent (stage 0 of the previous itera-
tion) as its representative. The function StageNext is called
when pipe_stage is executed — again, a stage initiated by

5All bounds stated in this section are expected time bounds. Analogous

high probability results can be obtained by applying standard techniques.

375

E�icient Parallel Determinacy Race Detection for Two-Dimensional Dags PPoPP ’18, February 24–28, 2018, Vienna, Austria

pipe_stage has no lparent and knows to use the dchildh
from its uparent (the previous stage in the same iteration).
The interesting function is StageWait, which is called

when pipe_stage_wait executes and the execution is ready
to advance to the next stage (i.e., dependence from the pre-
vious iteration has been satisfied). Since a stage initiated
by pipe_stage_wait has both uparent and lparent , the or-
der maintained by OM-DownFirst should use the dchildh
from itsuparent , and the order maintained byOM-RightFirst
should use the rchildh from its lparent . However, since Cilk-
P allows the execution to skip stages, identifying a stage’s
lparent requires additional work.

Consider the example shown in Figure 4. Say stage 5
of iteration i5, denoted as (i5, 5), had been created with
pipe_stage_wait(5) instead of pipe_stage(5). Since it-
eration i4 does not have a stage 5, the left parent of (i5, 5)
is (i4, 3). Consider another example case: Say stage (i4, 3)
had been created with pipe_stage_wait(3). This would
result a dependence from stage (i3, 0) to stage (i4, 3); how-
ever, this dependence is already subsumed by the depen-
dences from (i3, 0) to (i4,0) and from (i4,0) to (i4, 3). In this
case, (i4, 3) does not have a lparent despite being created by
pipe_stage_wait(3). The invariant is the following: When
a stage (i , s) is initiated by pipe_stage_wait and stage (i-1,
s) does not exist, (i , s)’s lparent is (i-1, s ′) where s ′ is the
largest stage in iteration i-1 such that s ′ < s and (i-1, s ′) is
logically in parallel with the uparent , (i , s-1). Otherwise, (i ,
s) does not have an lparent .

Function FindLeftParent, called in Algorithm 4, line 15,
performs the additional work needed to identify a stage’s
lparent (or lack thereof). The pseudocode for this function is
not shown since it is a little complex. Briefly, for every active
iteration i , we keep some metadata for the previous iteration
i-1; in particular, we keep an in-order array of the stage
numbers i-1 has executed so far. When FindLeftParent

is called in for stage (i , s), we search this array to find the
correct lparent , and -1 is returned if lparent does not exist.
Execution Time: The only additional work in Algo-

rithm 4 (compared to Algorithm 3) is FindLeftParent —
this function must be carefully implemented to minimize
overhead. Consider the obvious option. We can do a binary
search on the metadata array — since FindLeftParent could
be called for every node and there can be T1 nodes, this can
add a lgk multiplicative overhead, leading to a time bound
of O(lgkT1/P + lgkT∞), where k is the maximum array size.
Observe that if FindLeftParent is called by different

stages of the same iteration, the answers returned are strictly
increasing — if lparent of stage s is s ′, no subsequent
stage can have an lparent smaller than s ′. Thus, within
FindLeftParent(i ,s) we can search the metadata array of
iteration i-1 linearly starting from the smallest stage, remov-
ing all stages smaller than s ′ from the array. Each item is
removed at most once and the cost of the search is at most the
number of items removed, allowing us to amortize the work

of searches against the work of the nodes removed. However,
it has the disadvantage that some calls to FindLeftParent

may cost upto k . All expensive searches may happen on the
span, giving us the worst case bound of O(T1/P + kT∞).
FindLeftParent(i , s) implements a strategy that combine

the best of both worlds. Say the previous iteration (i-1) has
k elements in its metadata array. We start from the smallest
and look at lgk elements linearly. If we find our lparent , we
remove all elements smaller than s and return. If not, we
can remove all lgk elements we looked at, since they are
clearly smaller than s . Next, we do a binary search on the
rest of the metadata array to find the correct answer. Note
that the cost of each search is O(lgk). In addition, if the cost
was c , we removed Ω(c) elements from the metadata array.
Therefore, we can amortize the work in the same manner
and only incur a lgk overhead on the span, giving us the
bound of O(T1/P + lgk ·T∞) for PRacer.
Composability with Fork-Join Parallelism: Cilk-P al-

lows programmers to compose fork-join and pipeline con-
structs. Each stage can itself be a series-parallel dag or a 2D
dag and the nesting can be arbitrarily deep. Since nested
2D dags are also 2D dags, PRacer obviously applies directly
when pipelines are nested inside pipelines. We now describe
how we can handle nested fork-join parallelism.
2D-Order’s SP-maintenance algorithm is similar in spirit

to WSP-Order which is a parallel algorithm for detecting
races in fork-join programs [60]. WSP-Order also keeps track
of two total orders of the executed strands: English order
andHebrew order. The two strands are logically in parallel if
and only if their relative order in English and Hebrew differ.
English order is analogous to OM-DownFirst and Hebrew
order is analogous to OM-RightFirst.
Nested fork-join parallelism is handled in a straight-

forward manner. When a stage is a series-parallel dag,
we simply insert the nodes of this dag in English or-
der in OM-DownFirst structure and in Hebrew order in
OM-RightFirst structure. Series-parallel relationships are
still checked by comparing relative orders of strands in
the two structures. It is also straightforward to see why
this is correct. Imagine a stage that was a single node u,
represented by a single element in the OM data structures.
When this node is replaced by a series-parallel dag G ′, this
algorithm will replace the representative element of u in
OM-DownFirst by the all the nodes in G in English order
and in OM-RightFirst by nodes in G in Hebrew order. All
nodes in G would have the same relationship with other
nodes in the pipeline as u did.

5 Performance Evaluation

This section summarizes the implementation of PRacer and
evaluates its practical performance on three benchmarks
in terms of overhead and scalability. We first evaluate the
performance of only the series-parallel maintenance — that
is, each node is inserted into OM data structures as shown

376

PPoPP ’18, February 24–28, 2018, Vienna, Austria Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal

in Algorithm 4, but memory accesses are not instrumented.
These experiments indicate that the overhead of 2D-Order’s
SP-maintenance less than 1% in all benchmarks we exam-
ined, and it provides similar scalability as the baseline pro-
gram without SP-maintenance. We also evaluated the full
race-detection algorithm including access histories. In this
case, as with all race-detection algorithms, the overhead is
significant, between 14.7–41.1× overhead compared to the
baseline. However, we still get scalability similar to the base-
line; therefore, some of the overhead can be offset by running
race detection in parallel.
Implementation of PRacer:We implemented PRacer by

extending an open-source Cilk-P runtime system, released by
Intel [26], which supports the pipeline constructs as macro-
defines and the corresponding work-stealing scheduler to
schedule them. The implementation of PRacer consists of
two components, the race detection tool component and the
runtime component.
The tool component ensures that functions shown in Al-

gorithm 4 are called at the appropriate time to perform in-
sertions into the two OM data structures, queries are per-
formed on memory accesses, and manages metadata for
FindLeftParent and access histories. The tool component
is called via instrumentation inserted into Cilk-P control con-
structs (described in Section 4.1) and memory references. We
enabled the instrumentation of pipeline constructs by modi-
fying the macros defining the pipeline constructs in Cilk-P.
For memory accesses, we piggyback on the ThreadSanitizer
instrumentation [55] that came with the LLVM/Clang com-
piler (version 3.4.1).

The runtime component required significant modification
to the Cilk-P’s work-stealing scheduler to allow for con-
current OM data structures based on the scheme described
by Utterback et al. [60]. At a high-level, their concurrent
OM data structure does parallel rebalances — occasionally,
large portions of the data structure may be re-organized in
parallel. The work-stealing scheduler must be designed to (1)
perform appropriate concurrency control so that inserts do
not occur during a parallel rebalance; and (2) appropriately
move workers between the main program and the paral-
lel rebalance. Utterback et al. implemented their system in
open-source Cilk Plus runtime system released by Intel [25].
For PRacer, we re-implemented their strategy in the Cilk-P
runtime system since the original runtime does not support
pipelines.
Experimental Setup: We use three benchmarks to eval-

uate PRacer: ferret, lz77, and x264. Benchmark ferret

performs content-based similarity search on images. Bench-
mark lz77 is a lossless, dictionary file compression algo-
rithm. Benchmark x264 is an video encoder. Both ferret

and x264 are from PARSEC benchmark suite [7] and modi-
fied to use Cilk-P’s pipeline constructs. They are both eval-
uated using the largest input data set, native, that comes

stages / iter # of iters # of reads # writes

ferret 5 3501 1.23e11 1.23e10

lz7 3 162 8.96e10 2.97e10

x264 71 36352 1.12e12 1.17e11

Figure 5. The execution characteristics of the benchmarks.

with PARSEC. We implemented lz77 from scratch and ran
it with an input text file of size 162-MBytes.
Figure 5 shows the characteristics of these benchmarks.

Both ferret and lz77 have relatively simple pipelines,
where the structure of the pipeline is static and has a fixed
number of stages across iterations, five and three respec-
tively. On the other hand, x264 utilizes the on-the-fly feature
of Cilk-P’s pipeline parallelism — even though the number
of stages across iterations are the same, they can take on
different stage numbers from one iteration to another.

We ran all our experiments on an Intel Xeon E5-4620 with
32 2.20-GHz cores on four sockets. Each core has a 32-KByte
L1 data cache, 32-KByte L1 instruction cache, a 256-KByte
L2 cache. There are a total of 500 GByte of memory, and
each socket share a 16-MByte L3-cache. All benchmarks are
compiled with LLVM/Clang version 3.4.1 with -O3 running
on Linux kernel version 3.10. Each data point is the average
of 10 runs with standard deviation less than 5%.
Overhead of PRacer:To get a sense of PRacer’s overhead

breakdown, we ran the benchmarks with three different con-
figurations: the baseline configuration, which is the the orig-
inal program without race detection, the SP-maintenance,
which is the execution with only the SP-maintenance compo-
nent of the 2D-Order without memory instrumentation; and
full, which is the execution with the full 2D-Order including
both the SP-maintenance and access history management.
Figure 7 shows the sequential (T1) running time for

all of the three configurations.6 The overhead due to SP-
maintenance is insignificant for all benchmarks. On the other
hand, adding memory instrumentation increases overheads
significantly. This is explained by the fact that each stage is
inserted at most twice in each OM data structure and the
number of stages is relatively small (2.5e6 for x264). The
total number of memory accesses is many orders of magni-
tude larger. However, these results are consistent with the
overhead of full race detection in the literature [60].
Scalability of PRacer: Finally, we show that PRacer

scales similarly compared to the baseline. Figure 6 shows
the scalability plot of the three benchmarks. As can be seen
in the plots, the scalability of the SP-maintenance and the
full configurations track closely to that of the baseline. This
scalability is especially useful since race detection is so ex-
pensive — serially, x264 takes 4 hours with full race detection.

6The running times for x264 are much slower than what was shown in the

literature, because we disabled the vectorization code in order to perform

race detection correctly.

377

E�icient Parallel Determinacy Race Detection for Two-Dimensional Dags PPoPP ’18, February 24–28, 2018, Vienna, Austria

Figure 6. The scalability of the benchmarks. The x-axis shows the number of cores used. The y-axis shows the scalability,
computed by taking the runtime on one core divided by the runtime on P cores under the same configuration, where P is the
number cores used.

baseline SP-maintenance full

ferret 191.902 191.987 (1.00×) 7984.067 (41.60×)

lz77 116.079 117.902 (1.02×) 1703.636 (14.68×)

x264 933.721 934.572 (1.00×) 15877.110 (17.00×)

Figure 7. The execution times for the benchmarks running
on one core for all configurations, shown in seconds. The
numbers in parentheses indicate the overhead compared to
the baseline.

The parallelism of PRacer cuts this running time to a more
reasonable amount for debugging.

6 Related Work

Race detection has been studied for decades since Netzer and
Miller [39] formalized definitions for different kinds of races.
Beyond the dynamic on-the-fly approach which we took,
other approaches include static checking for races [16, 17, 36]
and post-mortem analysis [2, 10, 37, 38]. There is extensive
work on dynamic race detection for parallel computations
that do no have well-defined structure [15, 21, 41, 45, 54, 57,
62]. Here, we focus our attention on dynamic race detection
for structured programs.
As mentioned in Section 1, the race detection for fork-

join program has been extensively studied [6, 18, 19, 35, 40,
60]. Most related to this paper are SP-Order [6] and WSP-
Order [60]. SP-Order was the first race-detection algorithm
for series-parallel dags to provide asymptotically optimal
sequential running time. Analogous to this paper, it also
uses two order-maintenance data structures to maintain two
traversals. WSP-Order parallelizes SP-Order by designing a
new runtime system and a new OM data structure — it is
the first algorithm to get optimal parallel runtime. We took
similar approach used in WSP-Order to allow concurrent
accesses to OM data structures used by 2D-Order.
Researchers have also considered other structured pro-

grams. Lee et al. [30] considered fork-join programs that
use reducers, which leads to dags more general than series-
parallel dags, but still structured. Most related result to this

paper is by Dimitrov et al. [14], which provides a sequen-
tial race detection algorithm for 2D-dags. Their algorithm
runs sequentially and uses Tarjan’s nearly linear-time least-
common-ancestor (lca) algorithm [58] to identify the lowest-
common-descendent of a pair of nodes in order to deduce
whether they are in parallel. The use of Tarjan’s lca algo-
rithm leads to a small overhead in running time (functional
inverse of Ackermann’s function, which is small in practice
— bounded above by 4). In contrast, 2D-Order provides a
better theoretical bound sequentially; runs in parallel; and
provides asymptotically optimal parallel running time.
2D-dags (or lattices, in general) have been studied exten-

sively in graph theory. In particular, it has been known for
decades that two total orders are sufficient to specify the
partial order of a 2D-dag [3]. The contribution of this paper
is to define the two orders that are sufficient and to show
how to maintain them dynamically.

Acknowledgments

We thank the reviewers for their valuable comments and
helpful suggestions. This research was supported in part
by National Science Foundation under grant number CCF-
1527692, CCF-1439062, CCF-1150036, and CCF-1733873.

A Artifact Evaluation

PRacer is open source and available at https://gitlab.com/

wustl-pctg-pub/pracer.git. The tool library and the lz77

benchmark are provided under the MIT License. The run-
time modifications are licensed under a BSD license. The
modification to benchmarks ferret and x264 are released
under the GNU license. The repository contains complete
instructions for compiling and using PRacer, in addition
to scripts that reproduce the empirical results. Please send
feedback or file issues at our gitlab repository to help us
continually improve the project.

References
[1] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. 2010. Executing

Task Graphs Using Work-Stealing. In 24th IEEE International Parallel

378

PPoPP ’18, February 24–28, 2018, Vienna, Austria Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal

and Distributed Processing Symposium. 1–12.

[2] Todd R. Allen and David A. Padua. 1987. Debugging Fortran on a

Shared Memory Machine. In Proceedings of the 1987 International Con-

ference on Parallel Processing. 721–727.

[3] K. A. Baker, P. C. Fishburn, and F. S. Roberts. 1972. Partial orders of

dimension 2. Networks 2, 1 (1972), 11–28. https://doi.org/10.1002/net.

3230020103

[4] Rajkishore Barik, Zoran Budimlić, Vincent Cavè, Sanjay Chatterjee, Yi

Guo, David Peixotto, Raghavan Raman, Jun Shirako, Sağnak Taşırlar,

Yonghong Yan, Yisheng Zhao, and Vivek Sarkar. 2009. The Habanero

Multicore Software Research Project. In Proceedings of the 24th ACM

SIGPLAN Conference Companion on Object Oriented Programming Sys-

tems Languages and Applications. ACM, 735–736.

[5] Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-

Colton, and Jack Zito. 2002. Two SimplifiedAlgorithms forMaintaining

Order in a List. In Proceedings of the 10th European Symposium on

Algorithms. 152–164.

[6] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E.

Leiserson. 2004. On-the-Fly Maintenance of Series-Parallel Relation-

ships in Fork-Join Multithreaded Programs. In 16th Annual ACM Sym-

posium on Parallel Algorithms and Architectures. 133–144.

[7] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.

The PARSEC Benchmark Suite: Characterization and Architectural

Implications. In Proceedings of the 17th International Conference on

Parallel Architectures and Compilation Techniques.

[8] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011.

Habanero-Java: the new adventures of old X10. In Proceedings of the

9th International Conference on Principles and Practice of Programming

in Java. 51–61.

[9] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-

awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek

Sarkar. 2005. X10: An Object-Oriented Approach to Non-Uniform Clus-

ter Computing. In 20th Annual ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications. 519–538.

[10] Jong-Deok Choi, Barton P. Miller, and Robert H. B. Netzer. 1991. Tech-

niques for debugging parallel programs with flowback analysis. ACM

Transactions on Programming Languages and Systems 13, 4 (1991), 491–

530.

[11] Charles Consel, Hedi Hamdi, Laurent Réveillère, Lenin Singaravelu,

Haiyan Yu, and Calton Pu. 2003. Spidle: a DSL approach to speci-

fying streaming applications. In Proceedings of the 2nd International

Conference on Generative Programming and Component Engineering.

1–17.

[12] John S. Danaher, I-Ting Angelina Lee, and Charles E. Leiserson. 2008.

Programming with exceptions in JCilk. Science of Computer Program-

ming 63, 2 (Dec. 2008), 147–171.

[13] P. Dietz and D. Sleator. 1987. Two Algorithms for Maintaining Order

in a List. In Proceedings of the 19th Annual ACM Symposium on Theory

of Computing. New York City, 365–372.

[14] Dimitar Dimitrov, Martin Vechev, and Vivek Sarkar. 2015. Race Detec-

tion in Two Dimensions. In Proceedings of the 27th ACM Symposium on

Parallelism in Algorithms and Architectures. ACM, Portland, Oregon,

USA, 101–110.

[15] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks:

A Race and Transaction-aware Java Runtime. In Proceedings of the

28th ACM SIGPLAN Conference on Programming Language Design and

Implementation. ACM, San Diego, California, USA, 245–255.

[16] Perry A. Emrath and Davis A. Padua. 1988. Automatic Detection of

Nondeterminacy in Parallel Programs. In Proceedings of the Workshop

on Parallel and Distributed Debugging. 89–99.

[17] Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static

Detection of Race Conditions and Deadlocks. In Proceedings of the

Nineteenth ACM Symposium on Operating Systems Principles. ACM,

Bolton Landing, NY, USA, 237–252.

[18] Mingdong Feng and Charles E. Leiserson. 1997. Efficient Detection

of Determinacy Races in Cilk Programs. In Proceedings of the Ninth

Annual ACM Symposium on Parallel Algorithms and Architectures. 1–

11.

[19] Mingdong Feng and Charles E. Leiserson. 1999. Efficient Detection of

Determinacy Races in Cilk Programs. Theory of Computing Systems

(1999).

[20] Jeremy T. Fineman. 2005. Provably Good Race Detection That Runs in

Parallel. Master’s thesis. Massachusetts Institute of Technology, De-

partment of Electrical Engineering and Computer Science, Cambridge,

MA.

[21] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient

and precise dynamic race detection. In Proceedings of the 2009 ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation. ACM, Dublin, Ireland, 121–133.

[22] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The

Implementation of the Cilk-5 Multithreaded Language. In Proceedings

of the ACM SIGPLAN 1998 Conference on Programming Language Design

and Implementation. ACM, 212–223.

[23] Michael I. Gordon, William Thies, and Saman Amarasinghe. 2006. Ex-

ploiting coarse-grained task, data, and pipeline parallelism in stream

programs. In Proceedings of the 12th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems.

ACM, 151–162.

[24] Jialu Huang, Arun Raman, Thomas B. Jablin, Yun Zhang, Tzu-Han

Hung, and David I. August. 2010. Decoupled Software Pipelining

Creates Parallelization Opportunities. In Proceedings of the 8th Annual

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion. ACM, 121–130.

[25] Intel Corporation. 2011. Intel® Cilk™Plus. Available from https://

www.cilkplus.org/. (2011). Accessed: August 2017.

[26] Intel Corporation. 2013. Piper: Experimental Language Sup-

port for Pipeline Parallelism In Intel® Cilk™Plus. Available

from https://www.cilkplus.org/piper-experimental-language-support-

pipeline-parallelism-intel-cilk-plus. (2013). Accessed: August 2017.

[27] I-Ting Angelina Lee, Silas Boyd-Wickizer, Zhiyi Huang, and Charles E.

Leiserson. 2010. Using Memory Mapping to Support Cactus Stacks

in Work-Stealing Runtime Systems. In Proceedings of the 19th Interna-

tional Conference on Parallel Architectures and Compilation Techniques.

ACM, 411–420.

[28] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim Sukha,

and Zhunping Zhang. 2013. On-the-Fly Pipeline Parallelism. In Proceed-

ings of the 25th Annual ACM Symposium on Parallelism in Algorithms

and Architectures. 140–151.

[29] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim Sukha,

and Zhunping Zhang. 2015. On-the-Fly Pipeline Parallelism. ACM

Transactions on Parallel Computing 2, 3, Article 17 (Sept. 2015),

42 pages.

[30] I-Ting Angelina Lee and Tao B. Schardl. 2015. Efficiently Detecting

Races in Cilk Programs That Use Reducer Hyperobjects. In SPAA ’15:

Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms

and Architectures (SPAA ’15). ACM, Portland, Oregon, USA, 111–122.

[31] Charles E. Leiserson. 2010. The Cilk++ Concurrency Platform. Journal

of Supercomputing 51, 3 (March 2010), 244–257.

[32] Steve MacDonald, Duane Szafron, and Jonathan Schaeffer. 2004. Re-

thinking the Pipeline as Object-Oriented States with Transformations.

In 9th International Workshop on High-Level Parallel Programming

Models and Supportive Environments at IPDPS. 12–21.

[33] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard.

2003. Cg: a system for programming graphics hardware in a C-like

language. In ACM SIGGRAPH. 896–907.

[34] MichaelMcCool, ArchD. Robison, and James Reinders. 2012. Structured

Parallel Programming: Patterns for Efficient Computation. Elsevier

Science.

379

E�icient Parallel Determinacy Race Detection for Two-Dimensional Dags PPoPP ’18, February 24–28, 2018, Vienna, Austria

[35] John Mellor-Crummey. 1991. On-the-fly Detection of Data Races

for Programs with Nested Fork-Join Parallelism. In Proceedings of

Supercomputing’91. 24–33.

[36] John Mellor-Crummey. 1993. Compile-time Support for Efficient Data

Race Detection in Shared-Memory Parallel Programs. In Proceedings of

the ACM/ONR Workshop on Parallel and Distributed Debugging. ACM

Press, 129–139.

[37] Barton P. Miller and Jong-Deok Choi. 1988. A Mechanism for Effi-

cient Debugging of Parallel Programs. In Proceedings of the 1988 ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation. 135–144.

[38] Robert H. B. Netzer and Barton P. Miller. 1989. Detecting Data Races

in Parallel Program Executions. In In Advances in Languages and Com-

pilers for Parallel Computing, 1990 Workshop. MIT Press, 109–129.

[39] Robert H. B. Netzer and Barton P. Miller. 1992. What are Race Con-

ditions? ACM Letters on Programming Languages and Systems 1, 1

(March 1992), 74–88.

[40] Itzhak Nudler and Larry Rudolph. 1986. Tools for the Efficient Devel-

opment of Efficient Parallel Programs. In Proceedings of the First Israeli

Conference on Computer Systems Engineering.

[41] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid Dynamic Data

Race Detection. In Proceedings of the Ninth ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP ’03). ACM,

New York, NY, USA, 167–178.

[42] OpenMP Architecture Review Board. 2013. OpenMP Application

Program Interface, Version 4.0. Available from http://www.openmp.

org/mp-documents/OpenMP4.0.0.pdf. (2013).

[43] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August.

2005. Automatic Thread Extraction with Decoupled Software Pipelin-

ing. In Proceedings of the 38th Annual IEEE/ACM International Sympo-

sium on Microarchitecture. IEEE Computer Society, 105–118.

[44] Antoniu Pop and Albert Cohen. 2011. A Stream-computing Extension

to OpenMP. In Proceedings of the 6th International Conference on High

Performance and Embedded Architectures and Compilers. ACM, 5–14.

[45] Eli Pozniansky and Assaf Schuster. 2007. MultiRace: Efficient On-the-

fly Data Race Detection in Multithreaded C++ Programs: Research

Articles. Concurrency and Computation: Practice and Experience 19, 3

(March 2007), 327–340.

[46] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges,

and David I. August. 2008. Parallel-stage Decoupled Software Pipelin-

ing. In Proceedings of the 6th Annual IEEE/ACM International Sympo-

sium on Code Generation and Optimization. ACM, 114–123.

[47] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and

Eran Yahav. 2010. Efficient Data Race Detection for Async-Finish

Parallelism. In Runtime Veri�cation, Howard Barringer, Ylies Falcone,

Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace, Grigore

Rosu, Oleg Sokolsky, and Nikolai Tillmann (Eds.). Lecture Notes in

Computer Science, Vol. 6418. Springer Berlin / Heidelberg, 368–383.

[48] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and

Eran Yahav. 2012. Scalable and Precise Dynamic Datarace Detection

for Structured Parallelism. In Proceedings of the 33rd ACM SIGPLAN

Conference on Programming Language Design and Implementation. 531–

542.

[49] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I.

August. 2004. Decoupled Software Pipeliningwith the Synchronization

Array. In Proceedings of the 13th International Conference on Parallel

Architectures and Compilation Techniques. IEEE Computer Society,

177–188.

[50] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. 1995.

Run-time Methods for Parallelizing Partially Parallel Loops. In Pro-

ceedings of the 9th International Conference on Supercomputing. ACM,

137–146.

[51] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. 1995.

A scalable method for run-time loop parallelization. International

Journal of Parallel Programming 23, 6 (01 Dec. 1995), 537–576.
[52] Lawrence Rauchwerger and David A. Padua. 1999. The LRPD test:

speculative run-time parallelization of loops with privatization and

reduction parallelization. IEEE Transactions on Parallel and Distributed

Systems 10, 2 (Feb. 1999), 160–180.

[53] Daniel Sanchez, David Lo, Richard M. Yoo, Jeremy Sugerman, and

Christos Kozyrakis. 2011. Dynamic Fine-Grain Scheduling of Pipeline

Parallelism. In 2011 International Conference on Parallel Architectures

and Compilation Techniques. IEEE, 22–32.

[54] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and

Thomas Anderson. 1997. Eraser: A Dynamic Race Detector for Multi-

Threaded Programs. In Proceedings of the Sixteenth ACM Symposium

on Operating Systems Principles.

[55] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSani-

tizer: Data Race Detection in Practice. In Proceedings of the Workshop

on Binary Instrumentation and Applications. ACM, 62–71.

[56] M. Aater Suleman, Moinuddin K. Qureshi, Khubaib, and Yale N. Patt.

2010. Feedback-directed Pipeline Parallelism. In Proceedings of the

19th International Conference on Parallel Architectures and Compilation

Techniques. ACM, 147–156.

[57] Rishi Surendran and Vivek Sarkar. 2016. Dynamic Determinacy Race

Detection for Task Parallelism with Futures. Springer International

Publishing, 368–385.

[58] Robert Endre Tarjan. 1979. Applications of Path Compression on

Balanced Trees. Journal of the Association for Computing Machinery

26, 4 (October 1979), 690–715.

[59] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. 2007.

A Practical Approach to Exploiting Coarse-Grained Pipeline Paral-

lelism in C Programs. In Proceedings of the 40th Annual IEEE/ACM

International Symposium on Microarchitecture. IEEE Computer Society,

356–369.

[60] Robert Utterback, Kunal Agrawal, Jeremy T. Fineman, and I-Ting An-

gelina Lee. 2016. Provably Good and Practically Efficient Parallel Race

Detection for Fork-Join Programs. In Proceedings of the 28th ACM

Symposium on Parallelism in Algorithms and Architectures. 83–94.

[61] Jacobo Valdes. 1978. Parsing Flowcharts and Series-Parallel Graphs.

Ph.D. Dissertation. Stanford University. STAN-CS-78-682.

[62] Yuan Yu, Tom Rodeheffer, and Wei Chen. 2005. RaceTrack: Efficient

Detection of Data Race Conditions via Adaptive Tracking. In Proceed-

ings of the Twentieth ACM Symposium on Operating Systems Principles.

ACM, 221–234.

380

